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Abstract. Using the Keldysh nonequilibrium Green function method, we theoretically investigate the elec-
tron transport properties of a quantum dot coupled to two ferromagnetic electrodes, with inelastic electron-
phonon interaction and spin flip scattering present in the quantum dot. It is found that the electron-phonon
interaction reduces the current, induces new satellite polaronic peaks in the differential conductance spec-
trum, and at the same time leads to oscillatory tunneling magnetoresistance effect. Spin flip scattering
suppresses the zero-bias conductance peak and splits it into two, with different behaviors for parallel and
anti-parallel magnetic configuration of the two electrodes. Consequently, a negative tunneling magnetore-
sistance effect may occur in the resonant tunneling region, with increasing spin flip scattering rate.

PACS. 72.25.-b Spin polarized transport – 73.40.Gk Tunneling – 73.63.Kv Quantum dots

1 Introduction

In recent years spin-dependent electron transport in fer-
romagnetic junctions has been intensively studied both
experimentally and theoretically [1–12], which forms the
basis of a new branch of electronics known as spintronics.
In spintronics, both electron’s spin and the charge, are
manipulated to yield desired electronic outcomes [2–4].
For the formation and development of the spintronics,
the discovery of the large tunneling magnetoresistance
(TMR) effect contributed greatly. The TMR effect de-
scribes the large enhancement in tunnel resistance when
the FM leads switch their relative polarization alinement
from a parallel (P) to an anti-parallel (AP) magnetic con-
figuration, which provides the basic physical mechanism
for several devices such as magnetoresistive (or magnetic)
random access memory and read heads [5–7], magnetic-
field sensors [8], etc. TMR effects in such systems as ferro-
magnetic tunnel junctions composed of two ferromagnetic
metal (FM) leads separated by an insulating barrier [1],
ferromagnetic double-barrier junctions [9,10], and other
magnetic planar junctions [11,12], had been studied in-
tensively. Noting that pursuing miniaturization of proto-
type devices is one of the principal driving forces behind
the electronics [13], it is natural to incorporate nano-scale
low-dimensional quantum confined structures such like a
semiconductor quantum dot (QD), nanowire, or single-
molecular QD in the TMR structures.

So far, there have been many theoretical works on
FM/semiconductor QD/FM junction cases, with concen-
trations on effects of discrete charging by single electron
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and strong Coulomb interaction on the QD. Well known
effects as Coulomb blockade effect and Kondo effect in
such structures were studied intensively [14–18]. However,
there are relatively less works on cases in which the cen-
tral part is a nanowire or a single-molecular QD, where
the vibration degree of freedom that comes from the con-
formational flexibility of the central part, will inevitably
affect the electron transport properties, as well as the
TMR effect, intensively. In other words, on contrary to
the rigid semiconductor QD case, the inelastic interaction
between electrons and phonons, which are quanta of the
vibration degree of freedom, must be taken into account
when calculating the electron transport properties [19].
In the present paper, we will study the transport prop-
erties of FM-molecular QD-FM structures by using the
Keldysh nonequilibrium Green function method [20–22].
We focus on the effects of inelastic electron-phonon in-
teraction, as well as spin-flip scattering in the molecular
QD, on the spin-dependent electron transport properties
in such structures. For showing the effects explicitly and
for simplicity, all further complications are ignored. We
adopt single level model for the QD, and the Coulomb
charging effect is not considered here.

It is found that both the electron-phonon interaction
and the spin-flip scattering modify the current, as well
as the differential conductance spectrum, considerably. As
for the TMR effect, we find that the electron-phonon in-
teraction leads to oscillatory behavior of the TMR ratio as
a function of the bias voltage, while the spin-flip scatter-
ing may reduce the TMR ratio even to a negative value.
Consequently, the tunnel resistance of such structures in
the AP magnetic configuration may become lesser than
that in the P case, at some negative bias voltage regions,
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with increasing of the spin-flip scattering rate, which is
very different from the usual TMR effects.

2 Model and formulation

We consider a single-level molecular QD coupled to two
ferromagnetic electrodes by two tunneling barriers. The
physics of the QD’s vibration behavior is described by in-
troducing electron-phonon interaction. The whole system
can be described by Hamiltonian of the general form

H = HL + HR + HD + HT . (1)

The first two terms are, respectively, the Hamiltonian de-
scribing electrons in the left and right noninteracting fer-
romagnetic electrodes

Hα =
∑

kα,σ

εkασc†kασckασ (2)

with α = L, R, the operator c†kασ (ckασ) creates (anni-
hilates) a conduction electron with wave vector kα and
spin-σ inside the α electrode. For a parabolic-band fer-
romagnetic metal under Stoner model, the single-particle
energy spectrum εkασ = εkα + ησh0, where ησ = 1 for
σ =↑ and −1 for σ =↓, and h0 is the exchange-induced
spin splitting energy. The third term in equation (1) de-
scribes the central QD

HD =
∑

σ

[ε0 +
∑

q

Mq(a†
q + aq)]d†σdσ

+
∑

q

�ωqa
†
qaq + R(d†↑d↓ + d†↓d↑). (3)

Here, the first term represents the single QD, in the pres-
ence of electron-phonon interaction: d†σ (dσ) creates (an-
nihilates) an electron in the QD with spin-σ, ε0 is the
single-energy level of the QD, and a†

q (aq) creates (annihi-
lates) a phonon in mode q, with Mq the interaction matrix
element. The second term denotes a free phonon, while the
last term represents the spin-flip scattering process of elec-
trons, with R the phenomenological spin-flip rate. The last
term in equation (1) represents the coupling of the QD to
the electrodes

HT =
∑

kα∈L;R,σ

[Vkα,σc†kα,σdσ + H.c.] (4)

where the coupling matrix elements Vkα,σ transfer elec-
trons through an insulating barrier out of the QD. Here
we have neglected spin flip scattering in the tunneling pro-
cesses.

The current flows from the left (right) electrode to the
central QD can be calculated from the time evolution of
the occupation number for electrons in the left (right) elec-
trode [22],

IL(R) = −e〈ṄL(R)〉 = − ie

�
〈[H, NL(R)]〉 (5)

where Nα =
∑

kα,σ c†kασckασ, 〈· · ·〉 denotes the statisti-
cal average of physical observables. In steady state, the
current will be uniform through the whole structure, so
that I = IL = −IR, and I = IL = (IL − IR)/2. Follow-
ing the Keldysh nonequilibrium Green function formulism,
the current can be obtained as [23,24]

I =
ie

2�

∫
dε

2π
Tr{[ΓL(ε) − ΓR(ε)]G<(ε)

+ [fL(ε)ΓL(ε) − fR(ε)ΓR(ε)][Gr(ε) − Ga(ε)]} (6)

where fα(ε) ≡ f(ε−µα) is the Fermi distribution function
of the α lead, and the left and right leads will have different
chemical potentials when a voltage V is applied, µL −
µR = eV . The boldface notation indicates that the lesser,
retarded, and advanced nonequilibrium Green functions
G<(ε), Gr(ε), and Ga(ε) are matrixes in the spin space

G<(r,a)(ε) =

(
G

<(r,a)
↑↑ (ε) G

<(r,a)
↑↓ (ε)

G
<(r,a)
↓↑ (ε) G

<(r,a)
↓↓ (ε)

)
(7)

where G
r(a)
σσ′ (ε) and G<

σσ′ (ε) are the Fourier transform of
the QD electron’s retarded (advanced) and lesser Green
functions, Gr,a

σσ′ (t − t′) = ∓iθ(±t ∓ t′)〈{dσ(t), d†σ′ (t′)}〉,
and G<

σσ′ (t − t′) = i〈d†σ′(t′)dσ(t)〉, which will be calcu-
lated in the presence of the coupling to the left and right
leads. Here {, } denotes the anticommutator of operators.
It is convenient to introduce a ferromagnetic polariza-
tion rate pα = [Nα

↑ (εF ) − Nα
↓ (εF )]/[Nα

↑ (εF ) + Nα
↓ (εF )]

to account for the ferromagnetism of the FMs, where
Nα

σ (εF ) is the spin-dependent density of state (DOS) at
Fermi level. In terms of pα, the level-width functions
Γα(ε) = 2π

∑
kα

|Vkα,σ|2δ(ε − εkασ), which are propor-
tional to the density of state of the electrode α and also
represent the tunneling rate between the electrode α and
the QD, are given as [14]

ΓL(ε) = Γ0

(
1 + pL 0

0 1 − pL

)
(8)

ΓR(ε) = λΓ0

(
1 + pR 0

0 1 − pR

)
(9)

where Γ0 describes the coupling between the dot and the
left electrode with non-ferromagnetism, λ the parameter
represents the asymmetry between the left and right bar-
riers. Often the energy-dependence of the level-line width
function is not very important, so for simplicity we have
neglected the energy dependence of the level-line width
functions. Hereafter, we shall deal with symmetric elec-
trodes so that λ = 1, and pL = pR for P magnetic con-
figuration of the two FM electrodes, pL = −pR for AP
magnetic configuration.

The lesser Green function is calculated from the
Keldysh equation, G< = GrΣ<Ga, where Σ< is the
lesser self-energy, which, in the case of weak electron-
phonon interaction limit as we are considering here, is
given as Σ< = i[fLΓL − fRΓR]. On the other hand,
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from the usual definition of the self-energy Σr(a), we get
Gr −Ga = Gr[Σr −Σa]Ga = −iGr[ΓL + ΓR]Ga. Using
these relations, the current equation (6) is reduced to a
compact form as

I =
e

�

∫
dε

2π
[fL(ε) − fR(ε)]TrT(ε) (10)

where T(ε) = ΓLGrΓRGa. In the following, we first sim-
plify the dot Hamiltonian using operator algebra, and then
calculate the Green functions.

It is convenient to introduce a spin rotation transfor-
mation: b↑,↓ ≡ (1/

√
2)(d↑ ∓ d↓), b†↑,↓ ≡ (1/

√
2)(d†↑ ∓ d†↓) to

diagonalize the electrons in the QD in spin space. In term
of bσ(b†σ), the QD’s Hamiltonian equation (3) is rewrit-
ten as

HD =
∑

σ

[εσ +
∑

q

Mq(a†
q + aq)]b†σbσ +

∑

q

�ωqa
†
qaq (11)

where εσ = ε0 + ησR, which implies that the intradot spin
flip processes lift the level degeneracy in effect. Then, in or-
der to calculate the Green functions conveniently, we will
separate the electrons and phonons in the QD formally.
We solve equation (1) by a canonical transformation [25],
H̄ = eSHe−S , with

S =
∑

σ

b†σbσ

∑

q

λq(a†
q − aq) (12)

where λq = Mq

ωq
. Noting that eSf(A)e−S = f(Ā), after car-

rying out a little operator algebra, the transformed Hamil-
tonian for the QD is obtained as H̄ = H̄L+H̄R+H̄D+H̄T ,
with H̄α = Hα, H̄T ≈ HT , where the approximation is
reasonable because that it is in weak electron-phonon in-
teraction limit in the QD, while the coupling between the
QD and the ferromagnetic leads is weak, too. And

H̄D =
∑

σ

[εσ +
∑

q

Mq(ā†
q + āq)]b̄†σ b̄σ +

∑

q

�ωqā
†
qāq (13)

where b̄σ = bσX , b̄†σ = b†σX†, āq = aq − λq

∑
σ b†σbσ, and

ā†
q = a†

q − λq

∑
σ b†σbσ, with X = exp[−∑

q λq(a†
q − aq)].

Since X commutes with the bσ operator, so that the quasi-
particle number operator is the same as in the old repre-
sentation, i.e., b̄†σ b̄σ = b†σbσX†X = b†σbσ. Therefore the
electrons and the phonons in the QD are separated as

H̄D = H̄el
D + H̄ph

D =
∑

σ

(εσ −∆)b†σbσ +
∑

q

�ωqa
†
qaq (14)

with ∆ =
∑

q

M2
q

ωq
. Consequently, the original electron

Green function Gr,a
σσ′ (t) can be completely separated from

that of the phonon as [19,25]

Gr,a
σσ′ (t) = ∓iθ(±t)〈{b̄σ(t), b̄†σ′(0)}〉

= ∓iθ(±t)〈{b̃σ(t), b̃†σ′(0)}〉el〈X̃(t), X̃†(0)〉ph

= G̃r,a
σσ′ (t)〈X̃(t), X̃†(0)〉ph (15)

where b̃σ(t) = exp(iH̄elt)bσ exp(−iH̄elt), X̃(t) =
exp(iH̄ph

D t)X exp(−iH̄ph
D t), with H̄el = H̄L + H̄R + H̄el

D +
H̄T . The electron-phonon interaction is now reduced to
a renormalization factor, 〈X̃(t), X̃†(0)〉ph, which is evalu-
ated to be 〈X̃(t), X̃†(0)〉ph = exp[−Φ(t)] [25], with

Φ(t) =
∑

q

λ2
q[Nq(1 − eiωqt) + (Nq + 1)(1 − e−iωqt)] (16)

where Nq = 1/(eβωq−1), β = 1/kBT . Here for simplicity
we assume that all phonons have the same energy �ω0 (we
set � = 1 in the following), which is known as the Einstein
model [25]. Then equation(16) is reduced to

Φ(t) = g[N(1 − eiω0t) + (N + 1)(1 − e−iω0t)]

= g{2N +1−2
√

N(N +1) cos[ω0(t + iβ/2)]}(17)

with N = 1/(eβω0 − 1), and g =
∑

q λ2
q is a coupling con-

stant. The above transform of Φ(t) enables one to expand
exp[−Φ(t)] in series of the Bessel functions of complex ar-
gument, which will be used later to evaluate the entire
set of Green functions, as well as the spectral function, of
the QD.

The next step is to calculate the dot electron Green
function, G̃r,a

σσ′ (t), with respect to the Hamiltonian H̄el, us-
ing the standard equation-of-motion method. The method
generates high order Green functions, which have to be
truncated to close the equation. Here for simplicity we
assume that the electron-phonon interaction is weak and
consequently its contribution to the self-energy is negligi-
ble. Therefore, for the electron part it just turns out to be
a non-interaction resonant model through the single level
in the QD, with spin discrimination. After lengthy alge-
bra [22], the Fourier transform of G̃r,a

σσ′ (t) is obtained as

G̃r,a
σσ′ (ε) =

δσσ′

ε − (εσ − ∆) − Σr,a
σσ′(ε)

(18)

where the retarded and advanced self-energies due to the
tunneling processes between the QD and the two elec-
trodes are given as

Σr,a
σσ′ (ε) =

∑

kα∈L,R

|Vkα,σ|2δσσ′

ε − εkα ± 0+
= [Λσ(ε) ∓ i

2
Γσ(ε)]δσσ′

(19)
where the real and imaginary parts contain contributions
from the left and right electrodes, Λσ(ε) = ΛL

σ (ε) + ΛR
σ (ε)

represents an energy dependent renormalization of the res-
onant level, and Γσ(ε) = Γσ = Γ L

σ +Γ R
σ . Here for simplic-

ity, we assume the wide-band approximation for the fer-
romagnetic electrodes, in which one takes Λσ(ε) = 0 and
infinite band width. Combining equations (17)–(20), the
Fourier transform of the full Green function is obtained as

Gr,a
σσ′ (ε) = e−g(2N+1)

×
∞∑

l=−∞
Il{2g

√
N(N + 1)} elω0β/2δσσ′

ε − (εσ − ∆) − lω0 − Σr,a
σσ′(ε)

(20)
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Fig. 1. (a) Current I , (b) differential conductance G through
a FM-QD-FM junction structure as a function of bias voltage
V at zero temperature, for different values of electron-phonon
coupling strength: g = 0 (solid line), 0.2 (dashed line), 0.5 (dot-
ted line), and 1.0 (dash dot line). (c) G-V curve at tempera-
ture T = ω0, for g = 1.0. With other parameter pL = pR = 0,
R = 0, and Γ0 = 0.2ω0 taken. The voltage, temperature, spin-
flip rate and energy are all measured in units of the frequency
of the phonon mode ω0.

where Il(z) are the modified Bessel functions of complex
argument. In the following, we will calculate the elec-
tronic current and the differential conductance spectrum
by using equation (10), together with equations (8), (9)
and (20).

3 Numerical results and discussion

In Figure 1 we plot the current I (a) and differential con-
ductance spectrum G (b) as functions of transport volt-
age V for nonmagnetic electrodes (pL = pR = 0) at
zero temperature, with respect to different values of the
electron-phonon coupling strength, g = 0, 0.2, 0.5, 1.0.
Solid lines for g = 0 display a step-like increase of the
current and a corresponding resonant peak of the differ-

ential conductance, at zero bias, indicating that the Fermi
energy levels in the two electrodes match the single level
ε0 in the QD, and as a result leading to resonant tunnel-
ing of electrons. With increasing electron-phonon coupling
strength, the current is reduced, and the main conduc-
tance peak is suppressed, meanwhile shifted by ∆(g), to
εσ − ∆(g), as shown in equation (20), which is called a
polaronic shift since the electronic state is now dressed
by the polarization resulted from electron-phonon inter-
action. At the same time, the conductance develops new
satellite resonant peaks, which are roughly displaced by
the phonon mode energy ω0 from the main peak at the
positive-energy side. These results are also consistent with
earlier studies by other authors [19,26]. In Figure 1c for
a higher temperature T = ω0, however, satellite peaks
occur at both sides of the main peak. These satellite con-
ductance peaks can be understood in the following way: an
incoming electron with energy of εσ ±mω0 can emit(+) or
absorb(−) m phonons and thereby becomes resonant with
the localized level in the QD, which leads to positive or
negative-energy side conductance peaks, respectively. For
zero temperature (Fig. 1b), there are no phonon excita-
tions and the incoming electron can only emit phonons,
that is why the satellite peaks are located only at energies
larger than that of the main peak, while for finite temper-
ature (Fig. 1c), however, the incoming electron can not
only emit but also absorb phonons, and as a result satel-
lite peaks occurred at both sides of the main peak. It is in
phonon-assistant tunneling regime for the electron trans-
port through FM/QD/FM double junctions in the present
paper.

We now focus on the magnetic electrodes case. In Fig-
ures 2a and 2b, we show G − V curves for P and AP
magnetic configuration, respectively, with respect to dif-
ferent values of the spin-flip rate, R = 0 (solid), 0.2ω0

(dashed), 0.5ω0 (dotted), 1.0ω0 (dash dot), with g = 0
taken. First, the zero-bias resonant conductance peaks of
both P and AP magnetic configuration cases are sup-
pressed and splitted into two resonant peaks at finite
voltages V = ±R/e, with increasing R, which are re-
sulted from the fact that the spin-flip scattering lifts the
single degenerate level of the dot into two resonant lev-
els, as indicated in equations (11) and (20). Secondly, we
find that the two resonant peaks are asymmetric with
respect to their amplitude and width, for the P mag-
netic configuration case (see Fig. 2a), which may be a
result of the overall asymmetry for the mayor (up) and
minor (down)-spin directions, i.e., NL

↑ (εF ) + NR
↑ (εF ) >

NL
↓ (εF ) + NR

↓ (εF ), while the left and right peaks corre-
spond to the resonant tunneling of the minor and mayor-
spin electrons, respectively. As for the AP case, however,
where NL

↑ (εF ) + NR
↑ (εF ) = NL

↓ (εF ) + NR
↓ (εF ), the two

resonant peaks are consequently symmetric with respect
to their amplitude and width (see Fig. 2b). In Figure 2c,
the TMR rate [TMR ≡ (GP −GAP )/GAP ] is plotted as a
function of V , for different values of R. As stated above,
peaks are higher and wider in the P case than in the
AP case, at positive voltages V = R/e, while they are
higher and narrower in the P case than in the AP case, at
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Fig. 2. G−V curves in (a) P, (b) AP magnetic configurations,
for different values of spin-flip rate: R = 0 (solid line), 0.2ω0

(dashed line), 0.5ω0 (dotted line), and 1.0ω0 (dash dot line).
(c) TMR ratio as a function of V for the above different R.
With |pL| = |pR| = 0.5, g = 0, Γ0 = 0.2ω0 and T = 0.05ω0

taken.

negative voltages V = −R/e. Therefore GP is generally
larger than GAP for V > 0, leading to a positive TMR
effect at positive voltage. However, it is interesting that
because of their different peak shapes, GP may equal to,
or become even lesser than GAP , at some negative volt-
age depending on R as shown in the figure, which con-
sequently leads to a negative TMR effect. At the same
time, it is found that TMR dips occur at negative volt-
ages V = −R/e, while peaks occur at positive voltages
V = R/e.

In Figures 3a–3c, we present GP , GAP , and the TMR
rate as functions of the bias voltage for different values
of electron-phonon coupling strength g = 0.2, 0.5, 1.0,
respectively, at R = 0. It is found that with increasing
g, the conductance develops new satellite peaks, at the
same time the main peak is shifted and suppressed, as
discussed above. On the other hand, as is known that the
TMR rate is given by TMR = p2/(1 − p2) when there
is no spin-flip scattering process (R = 0), [11,27,28]. So
that the TMR rate is positive for a finite value of po-

Fig. 3. GP (solid line), GAP (dashed line), and TMR (dotted
line) as a function of the bias voltage V , for different values
of electron-phonon coupling strength, (a) g = 0.2, (b) g = 0.5,
(c) g = 1.0. With |pL| = |pR| = 0.5, R = 0, Γ0 = 0.2ω0 and
T = 0.05ω0 taken.

larization P (|P | < 1), which, together with the slight
difference between line shapes of the GP and GAP curves,
lead to a positive and oscillatory TMR effect as a func-
tion of V (dotted line). Next, we discuss the combined
effects of the electron-phonon interaction and the spin flip
scattering on the conductance and TMR effect. In Fig-
ure 4, we give the same results as in Figure 3b, but now
for R = 0.5. It is found that GP and GAP in Figure 4 are
suppressed with respect to those in Figure 3b, at the same
time each of the peaks at V = ±0.5ω0/e (see Fig. 3b) is
splitted into two because of the spin flip scattering pro-
cess, forming the main peak at V = 0 and two side peaks
at V = ±ω0/e, respectively, with different behaviors for
GP and GAP (see Fig. 4). Generally, the peak positions
are determined by two factors, say, the strength of the
electron-phonon coupling and the spin flip rate. As for the
TMR effect, apart from its overall oscillating behavior, it
is found that the TMR rate is negative in two voltage
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Fig. 4. GP (solid line), GAP (dashed line), and TMR (dotted
line) as a function of the bias voltage V . With |pL| = |pR| =
0.5, g = 0.5, R = 0.5, Γ0 = 0.2ω0 and T = 0.05ω0 taken.

regions about −0.75ω0 to −0.9ω0 and −1.1ω0 to −2.1ω0,
respectively, which is caused by the different dependence
behaviors of GP and GAP on the spin flip scattering pro-
cess, as discussed above.

If the two FM electrodes have noncollinear spin-
polarization directions, it is convenient to introduce an
angle θ between them, while θ = 0 and π denote for
the above discussed P and AP magnetic configuration,
respectively. The tunnel Hamiltonian equation (4) should
be modified as,

HL
T =

∑

kα∈L,σ

[Vkα,σc†kα,σdσ + H.c.] (21)

HR
T =

∑

kα∈R,σ

{[Vkα,σc†kα,σ cos(θ/2)

−Vkα,σc†kα,σ sin(θ/2)]dσ + H.c.} (22)

and other calculations be proceeded along the same way.
For experimentally investigate the above effects, we

give some orientative values of the parameters as follow.
One most important parameter is the single phonon en-
ergy ω0, which may be chosen as 0.5 eV to 1.0 eV, and
other energies are given in unit of ω0 as indicated in the
discussion part. The actual electron-phonon coupling con-
stant is varying from 0 to 0.5ω0. The FM is chosen as an
normal metal for p = 0, and a ferromagnetic metal with
exchange energy h0 ≈ pEF for p 	= 0, where EF is its
Fermi energy.

In summary, by using the Keldysh non-equilibrium
Green function formula, we have theoretically studied the
electron transport properties of FM-QD-FM junctions,
and with inelastic electron-phonon interaction and spin
flip scattering processes presented in the central molecu-
lar QD. It is found that the electron-phonon interaction
leads to a reduction of the current, as well as new satellite
peaks in the different conductance spectrum besides the
main resonant one that is associated with the single level
in the QD. The electron-phonon interaction may also lead
to oscillatory behavior of the TMR effect as a function of
the bias voltage. On contrary to the usual positive TMR
effect, where GP is generally larger than GAP , we found

that the spin flip scattering process in the QD may lead
to a negative TMR effect at some negative voltages in the
resonant tunneling region.

This work was supported by the National Science Foundation
of China under grant No. 10225420.
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